

FUNCRYPTA - a systems biology approach to understand anhydrobiosis

Weronika Wełnicz¹, Martina Schnölzer², Thomas Dandekar³, Dirk Reuter⁴, Ralph O. Schill⁵, Marcus Frohme¹

1 University of Applied Sciences, Wildau, Germany; 2 German Cancer Research Center (DKFZ), Heidelberg, Germany; 3 Department of Bioinformatics, University of Würzburg, Germany; 4 Oncoscience AG, Department of Tumor Research, Wedel, Germany; 5 Institute for Zoology, University of Stuttgart, Germany

TARDIGRADES = WATER BEARS

- first described by the german pastor J.A.E. Goeze (1773)
- occur over the whole world in a variety of habitats within marine, freshwater and terrestial ecosystems
- water bears are a phylum of small invertebrates, related to the Arthropods [1]
- their body size ranges in length from 0.05 1.2 mm
- they have capability to enter a reversible state known as anhydrobiosis [2]

ANHYDROBIOSIS & FUNCRYPTA AIM

- first observed and described by Antony van Leewenhoek (1702)
- defined as a state in which metabolism is not detectable as a response to desiccation [3]
- tardigrades in this state shows no visible signs of life "Dead but still alive"
- the aim of project is to understand the mechanism of anhydrobiosis, investigation of genes, enzymes and their product that enable tardigrades to survive extreme environmental conditions

PROTEOMICS

- identification of induced proteins with following methods:

proteome map, 2D-DIGE, ICPL, mass spectrometry

Fig. 1: Two-dimensional gel electrophoresis, proteome map of tardigrades

POTENTIAL APPLICATION

- long-term storage and preservation of cell, tissue, food and macromolecules
- metabolic pathway components responsible for dessication tolerance
- extending shelf life of protein-based drugs and enzymes
- stabilization of macromolecules, cells, tissues and even intact plants and animals

GENOMICS

- construction of two standard (active / inactive) & four normalized cDNA libraries (active / inactive / inactive / intermediate stages) (Fig. 2)
- native libraries are being Sanger sequenced, normalized libraries sequenced by pyrosequencing
- expression profiling and comparison of different stages via cDNA microarrays
- identification of candidate gene by representational difference analysis
 (optional arraying of R

intermediate

Inactive

Fig. 2: Schematic representation of the genomics subproject

(optional arraying of RDA products) [4]

Dehydration

Rehydration

Fig. 3: Tardigrade from active to inactive state (anhydrobiotic state)

ZOOLOGY / PHYSIOLOGY

- physiogical investigations to validate and quantify identified genes and proteins with the following methods: qRT-PCR, FISH,RNAi, functional assays

- provider of culture

Fig. 4: DAPI staining Milnesium Tardigradum

REFERENCES

[1] Kiehl, E., Dastych H., D'Haese J., Greven. H. 2007.
J. Limnol., 66(Suppl. 1): 21-25.

[2] Hengherr, S., Brümmer F. & Schill R. O. 2008.
J. Zoology 275, 216-220.

[3] Jönnson, K. I. & Rebecchi L. 2002.

[4] Hubank, M.; Schatz, 1994. D.G. Nucleic Acids Res. 22, 5640-48.

J. Exp. Zool. 293, 578-584. Hubank, M.: Schatz, 1994.

BIOINFORMATICS

 drawing up mathematical models to predict dynamic cellular changes between the active and cryptobiotic stages of tardigrades

Fig. 5: Tardigrade Analyzer web interface